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Abstract—Wireless sensor networks (WSNs) are used for long-
term observation and monitoring. Such long-lasting deployments
require different maintenance tasks, such as the replacement
of nodes and the most critical initial installation of the sen-
sor nodes. During maintenance, the actual node placement is
modified resulting in temporary topology fluctuations, which
are very expensive in terms of energy. We propose the NoSE
protocol stack enhancement for WSNs to target maintenance
tasks. NoSE provides the functionality for switching the network
between an operational state and a deep sleep state. The deep
sleep state allows for switching the network to energy savings,
while performing maintenance. The network may be woken
up at any given time. During the time bounded start-up, a
comprehensive neighborhood assessment provides a solid basis
for the subsequent network topology setup. Thus the success of
a maintenance task, e.g., the initial deployment of the nodes, can
be instantly validated. We present NoSE on a case study focusing
on the initialization of a fire-detector WSN validated on a testbed
and in simulation.

I. INTRODUCTION

Energy efficiency is of utmost importance for long-term
wireless sensor network (WSN) deployments. Numerous ap-
proaches and system components address the design of
application-specific solutions for energy-efficient WSNs. How-
ever, the issue of maintaining the sensor network and different
operating modes in the WSN life cycle has been largely
neglected. This paper proposes the NoSE protocol stack en-
hancement and allows mode changes of the application: (1) the
network can be set back to sleep while it is being maintained,
(2) the network topology can be initialized efficiently with
respect to time and energy, (3) protocol parameters can be
changed at runtime.

As a motivating example, we introduce a wireless fire
detector network that is deployed in a large office setting.
A sensor node checks for smoke detection locally and for
availability of its immediate neighbors for coverage. At the
beginning, nodes are installed in the deployment area. This
cumbersome task is expected to take multiple days, possibly
parted by a weekend. Hence, the first nodes in a network that
are being installed and powered on are likely to be without
sufficient connectivity for a considerable time. During this
time it is essential that the nodes do not search extensively for
neighbors not yet deployed, wastefully depleting the batteries.
On the other hand, responsiveness of starting up the network
is important and should not be diminished by a greatly
reduced signaling scheme as used in low-power data gathering

stacks [1]. NoSE addresses this task by providing the means
for a time and energy-efficient initialization.

During a long lifetime of such a sensor network in the
order of years, maintenance tasks need to be performed. A
common task for fire detectors is the replacing and adding of
nodes. This may introduce false alarms due to intermittent con-
nectivity failures. Maintenance can also considerably increase
data traffic due to frequent topology changes announced by
broadcasting. NoSE provides the functionality for turning a
network off temporarily and starting it up by constructing a
stable topology as soon as the maintenance task is completed.

At the (re)start of the distributed fire-detector network, the
maintenance team needs a timely reassurance of a correct
system setup. Are there any partitions? Do nodes need to be
relocated for increased connectivity? Is a certain node com-
pletely unavailable? NoSE allows to answer such questions in
a timely manner. In this context, a detailed link assessment
is vital for a stable startup of the system. The low-power
radios typically used in a multi-hop deployment result in a
large fraction of poorly connected nodes [2], [3]. Low-quality
links affect the routing protocol especially during the network
setup, where statistical data on the links’ performance is not
yet available [4]. The start-up scheme of NoSE (Neighbor
Search and Estimation) allows for an exhaustive neighbor
search including a detailed link assessment.

In this paper we propose NoSE, a protocol enhancement
that can be used with the most commonly used WSN protocol
stacks. NoSE allows for operational mode changes traversing
a defined sequence of states as illustrated in Fig. 1. With so
called network calls, all nodes in the network can be toggled
between an operational and a sleep state. This allows for
putting the network in a very energy-efficient sleep mode while
a maintenance task is being performed. When (re)starting,
NoSE’s built in discovery scheme provides the functionality of
an exhaustive neighbor search and link assessment in a short
and bounded time. This allows for a fast and energy-efficient
start-up of the WSN and for an immediate feedback about the
integrity of the network.

In the following, we discuss related work in WSN research.
Section III details maintenance tasks and evaluation metrics.
Section IV describes NoSE’s network calls and neighbor dis-
covery functionality. Section V discusses the implementation
of NoSE and presents the test setup on a testbed and in
simulation. Section VI offers a comprehensive evaluation of
NoSE.
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Fig. 1. NoSE state machine. A received network call initiates a timer that triggers the actual state change.

II. RELATED WORK

The MAC protocol can greatly influence the energy con-
sumption and responsiveness while maintaining and initializ-
ing the network. MAC protocols based on a global structure
are typically more complex than protocols based on a random
access scheme.

Protocols that need to maintain a global structure (e.g.,
slot based [5], TDMA [6], [7]) are likely to show an in-
creased activity while performing maintenance tasks. This
is required for keeping the changing topology up to date,
i.e., for synchronization or slot arbitration. This requires the
nodes to listen intensively and to send numerous neighbor-
announcement beacons in order to learn the current channel
policy. Moreover, separated clusters can emerge, each having
different channel access timings, and taking time to unify. This
reduces the system’s responsiveness.

Random-access protocols, commonly based on the low
power listening (LPL) scheme [8], do not require such an intri-
cate setup. Protocols, such as B-MAC [9] and WiseMAC [10],
do not initiate message transmissions. It is up to the upper
layer protocol to decide when the sending of the first message
is being initiated.

For maintenance, protocols like Deluge [11] and
Trickle [12] provide means for updating the code. Such
data dissemination protocols complement NoSE’s operational
mode changes ideally. In particular, the parameter call
provided by NoSE allows for temporarily decrease the
MAC’s polling interval and hence increase the available
bandwidth. This allows for a swift and efficient dissemination
of a code image. Two of the few protocols that already
consider operational mode changes are Dozer [1] and
Koala [13]. Dozer provides a combined MAC and network
layer, which requires to send regular beacons. If the sink node
stops sending beacons, the nodes in the network eventually
fall asleep. The nodes are gradually woken up again as soon
as the sink starts sending beacons again. Since Dozer was
not explicitly designed to support mode changes, it misses
the functionality for a fast and time-bounded (re)start of
the network. Koala is a pull-based data retrieval protocol
that puts the network to sleep, waking it up infrequently
to download intermittently collected data. Koala relies on
low-power probing for waking up nodes rather than LPL.

Several approaches for initializing WSNs were proposed
in recent years. The most prominent solution is the Birthday
Protocol (BP) [14] by McGlynn and Borbash. Their protocol
discovers the nodes’ neighbors during the network’s initial-
ization (triggered at the sink). While an exhaustive neighbor
list is generated, there is no information about the connection
quality provided. BP is based on a specialized MAC, which
requires implementing two communication stacks. Since BP’s
execution time is non-deterministic, transfer from initialization
to network operation is not straight forward.

Kuhn et al. [15] as well as Moscibroda et al. [16] both
suggest setting up a clustered structure for an optimized
initialization process. Both these clustered approaches are
rather complex and difficult to be implemented on a resource-
limited sensor node. Furthermore the cluster head is less
energy efficient than its children, limiting the use for homoge-
neous networks. In [16] a second, so-called uniform algorithm
is proposed, which is based on an exponentially increasing
sending probability.

Woo et al. [17] investigate and evaluate various estimators
for link-quality assessment while running in operational mode.
They analyze how a finite, typically quite small neighbor
table, providing connectivity and routing information, can be
managed. Such an algorithm considerably improves network
operation; however it does not solve the issue of estimating
the link quality during initialization. Analyzing link-estimation
strategies, [3] shows that 20 to 50 samples allow for a detailed
link assessment in certain scenarios. NoSE demonstrates that
this link assessment is viable even in case of interfering nodes.

III. MAINTENANCE AND INITIALIZATION

NoSE allows for mode changes between the sleep and the
operational state. If a maintenance task is to be performed,
nodes are set to sleep. This is of particular importance during
the initial installation of the nodes, and hence nodes automat-
ically switch to a sleep state when being powered on. During
sleep nodes minimize their energy consumption. As soon as
the maintenance task is completed, the nodes are woken up
and return to normal operation.

A. Criteria
NoSE is evaluated on the criteria important for the mainte-

nance and initialization of a WSN:



1) Energy efficiency versus responsiveness: Energy con-
sumption is crucial for most sensor network deployments.
The maintenance task takes considerable time. During
this phase, it is vital that the nodes do not drain a
substantial fraction of their battery power. This is par-
ticularly likely since the dynamics introduced by the
maintenance greatly increase the node’s communication
overhead and hence its energy consumption. Typically
energy consumption and responsiveness are a trade-off:
On the one hand, a protocol may spend a lot of energy
by aggressively looking for neighbors, which allows for
fast topology formation. However, if nodes are not yet
ready to participate, this approach is in vain. On the other
hand, minimizing radio communication decreases energy
consumption, but also responsiveness.
The time delay for setting the network back to oper-
ation is a major concern as a time-bound, distributed
assessment of the topology is vital. The responsiveness of
sensor nodes needs to be traded off with the requirements
on energy efficiency during the deployment phase. NoSE
allows for explicit setting of a suitable trade-off for a
given application by adjusting its duty-cycling parame-
ters.

2) Neighbor Discovery and Link-Quality Assessment: At
the beginning of the operational state, responsiveness
and energy usage can be improved by providing a well
assessed neighborhood allowing for fast topology setup
without a large communication overhead. While in sleep
mode, a node might not have (up-to-date) information
about its neighbors. This requires an initial message
exchange, which is expensive. Hence, neighbor discovery
shall only be performed on a completed deployment in
order to avoid repetitive neighborhood searches while
more nodes are still joining. At the exit of the sleep
state all neighbors should be available. Hence, neighbor
discovery is performed after waking up all the nodes in
the distinct transitional discovery state.
As Table II in Sect. VI-C indicates, more than a third of
the links available in the network have a packet reception
rate of less than 85%. Hence energy is wasted in the
operational state if neighbors with a bad link quality
are selected, which need to be replaced later on. This
necessitates a link-quality assessment, allowing for the
selection of high-quality neighbors.

In addition to these evaluation criteria, there is a strict
requirement for compatibility. The maintenance and initial-
ization protocol must integrate with a given protocol stack.
Although a specialized initialization protocol may benefit from
a private second protocol stack, an integration minimizes the
resource requirements. NoSE is designed for integration with
the prevailing low power listening (LPL) MAC protocols, e.g.,
it can be used with B-MAC available in TinyOS 1.x and 2.x.

In an LPL-based MAC, a node generally has the radio
turned off, only switching it on at a regular interval TP in
order to poll the channel for a short time Tcs. If a carrier
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Fig. 2. CTP* does not distinguish between sleep and operation. It broadcasts
regular beacons during maintenance (t < 0 s), even if neighbors are not yet
available. The dashed line denotes the average over the last 10 s.

is detected, the node keeps listening, otherwise the radio
is switched off immediately. This concept results in a very
energy-efficient operation (duty cycle = Tcs/TP ), if there is
no or little communication in the network. TP can be tuned for
optimized energy consumption if channel utilization is known
[9].

B. A Case for a Dedicated Maintenance Protocol

In order to show the need for a protocol stack enhancement,
we investigate the effect of maintenance on a state-of-the-art
low-power protocol stack. In particular, we look at the start-up
behavior of the TinyOS Collection Tree Protocol (CTP) on top
of a LPL MAC protocol. The so-called CTP* [18] has been
running efficiently and reliably on our testbed (cf. Sect. V-C)
for months.

CTP* does not feature a dedicated maintenance phase.
Hence during the installation of the nodes, repeated neighbor
announcements are broadcast long before all nodes are avail-
able. This results in an increased current draw of 0.67 mA
during the installation of the nodes (cf. Fig. 2 for t < 0 s). As
shown in Sect. VI-A a dedicated maintenance protocol such
as NoSE reduces this amount by 60%.

CTP* is designed and parameterized for an efficient overall
operation, at the price of a delayed responsiveness during start.
As shown in Fig. 3, CTP* shows a lot of parent switches,
distributed throughout the network’s start-up. These switches
can mostly be attributed to parent selections with bad link
qualities and require a lot of control beacons for announcing
the changes in the topology. The impact is two-fold: (1) it
takes about an hour to build a stable topology and to conclude
about the integrity of the network and (2) each control beacon
wastes considerable energy as can be seen in a power trace in
Fig. 2 for t ≥ 0 s. Using the NoSE protocol enhancement, the
start-up process can be sped up and energy is saved due to the
integrated link assessment of the NoSE discovery scheme.

IV. NOSE IN DETAIL

Mode changes in NoSE are supported by an internal state
machine depicted in Figure 1. Additional to the sleep and
operational states, the transitional discovery state is respon-
sible for the neighbor assessment. A mode change is initiated
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Fig. 3. Dynamics of the network after start-up of CTP* in a 25-node testbed.
It takes CTP* about an hour to obtain a stable topology.

by network calls: a wake-up call in sleep mode initiates an
initialization of the network; a sleep call in operational state
initiates the transition into a global, low-power-listening mode.

On power-on, a node enters the very energy-efficient sleep
state. While sleeping, the nodes only wake up every TSleep

P

for a quick poll of the channel. Since every node in the
network follows this paradigm, no message exchange takes
place during sleep. The sleep state is introduced in order
to save energy after the node is initially powered on and
during maintenance. In particular, it is of limited use to gather
neighborhood information when not all surrounding nodes are
yet available or nodes are added, removed and relocated.

After installation or when the maintenance task is com-
pleted, the network is woken up by a wake-up call originating
at a single node, e.g., the sink node. The wake-up call is
disseminated by flooding the network. The flood notifies and
synchronizes all nodes in the network for the upcoming quasi-
synchronous discovery phase by propagating two timer values:
(1) the discovery start timer triggers the transition to the
discovery state, (2) the discovery expiration timer triggers
the exit from discovery (cf. Fig. 1). Quasi-synchronous in
this respect means that the nodes synchronize on a common
time window for the discovery phase. Hence a rather loose
synchronization in the order of a second is sufficient.

During discovery, an exhaustive neighbor search and link
assessment is performed. All nodes send a predefined number
of messages N , making it beneficial to decrease the channel-
polling interval to TDisc

P � TSleep
P .1 This shortens the

duration of the discovery due to the temporarily increased
bandwidth and saves considerable energy. The discovery phase
ends at the same time for all neighbors. It results in complete
and well-assessed neighbor information available at every
node.

On expiration of the discovery expiration timer, the node
enters the operational phase. In particular, the nodes will first
set up a network topology based on the well-assessed neighbor
information provided by NoSE. For the operational state, the
MAC’s polling interval is set to TOp

P , which is propagated in

1While non-duty cycled operation could be beneficial during discovery, we
maintain LPL operation during all operational modes based on the requirement
to have a single protocol stack and MAC layer.

the wake-up call. At any time, the operating network can be
set back to sleep by flooding a sleep call in the network.

An overview of all NoSE parameters and suggested setting
is provided in Table I.

A. Network Calls

Mode changes are initiated by network calls. These calls are
triggered at a dedicated node (usually the sink) and flooded
in the network. There are three possible network calls: (1) the
wake-up call that wakes up the network, (2) the sleep call that
puts the nodes back asleep and (3) the optional parameter call,
which updates the MAC polling interval. A call comprises all
information required for the subsequent mode transition:
• It contains a call-type identifier, denoting whether the call

is a sleep, wake-up or parameter call.
• It contains a call id cid. For every new call initiated by

the sink, the id is incremented.
• It contains the countdown-timer TS , indicating the start

time of the mode change, and its duration TD.
• It includes two duty cycles for the MAC protocol. One is

to be applied after the start of the mode change TS and
the other one to be used after the expiration of the mode
change TS + TD.

The calls need to be reliable and fast in order to reach all
nodes before the start of the discovery phase. Furthermore it
is essential that calls induce only minimal overhead and are
easily integrated. NoSE calls are based on a simple flood in the
network. If a new call is received for the first time, a message
is broadcast to all neighbors. Collisions are minimized by
benefiting from the MAC’s collision avoidance, i.e., doing a
carrier sense before sending. There is no need to use the NoSE
specific wake-up call, if the system already provides means for
a fast and reliable flood, e.g., Trickle [12].

A potential problem is if a node misses one of the calls
flooded in the network. In order to ensure consistency in the
network, NoSE calls provide a recovery scheme similar to the
one of Trickle. Every node stores the most recent call ccur

id .
Whenever a call is received containing a newer call (cid >
ccur
id ), the call is forwarded and the old call is replaced in the

history. Is the received call the node’s current call, the call is
ignored. If the node however receives a call containing an old
id (cid < ccur

id ), the node broadcasts its state ccur
id and hence

ensures that the outdated node gets synchronized. Similar, if
a node A receives a non-NoSE message during sleep from a
node B, node A knows that the network is not consistent. It

Parameter Description Typical Value
TS Remaining time until mode change 60 s
TD Duration of mode change (discovery) 2 min
N Number of discovery packets 30
TR Reserve time for queued packets (MAC) 3 s
T Sleep

P MAC polling interval during sleep 1.5 s
T Disc

P MAC polling interval during discovery 50 ms
T Op

P MAC polling interval when in operation 300 ms

TABLE I
OVERVIEW OF NOSE PARAMETERS AND SUGGESTED SETTING.



therefore broadcasts its current state. Subsequently, node B
will get asleep if it had missed the sleep call, i.e., cB

id < cA
id.

Otherwise (cB
id > cA

id) node B will send its current status,
which indicates node A should become operational.

1) Wake-up Call: The wake-up call notifies and prepares all
nodes in the network for the subsequent discovery phase. All
nodes have to know the point in time TS when the discovery
phase begins, its length TD, the number of packets N being
exchanged and the channel-polling interval during discovery
TDisc

P and during the subsequent operational state TOp
P .

2) Sleep Call: In the operational state, NoSE allows to set
the network back asleep. This is done by flooding the network
with a sleep call containing the duty cycle TSleep

P during the
sleep phase and the start time TS . The sleep phase lasts until
receiving a wake-up call and hence has no duration (TD = 0).
It is up to the application designer, whether the application
should still gather new data and whether potentially buffered
messages are to be forwarded should be kept in the queue or
flushed. However, no messages are forwarded until the next
time the operational state is entered.

3) Parameter Call: The parameter call is an optional fea-
ture of NoSE. It allows for adapting the MAC’s duty cycle.
Similar to a wake-up call, the parameter call contains the
time TS and the new duty cycle TOp∗

P . The start time TS

ensures that all nodes in the network switch the duty cycle
synchronously despite the propagation delay while flooding
the call. Furthermore the parameter call allows to define a
duration TD for which the new duty cycle should be applied
before returning back to the old duty cycle. If the duration is
set to zero, the duty cycle is changed to TOp∗

P upon further
notice. Parameter calls do not trigger a mode state change.

B. Discovery Phase

The discovery phase starts at the same time for all nodes that
have received the wake-up call. During discovery with duration
TD the node sends exactly N broadcast messages containing
their node identifier. In parallel to sending the broadcast
messages, nodes keep a neighbor entry for all neighbors they
receive packets from. In particular, they track the number of
received packets and the maximum RSSI. As analyzed in a
scenario without in-network interference [3], the number of
received packets and the RSSI allows for reliably assessing
the link quality.

During the discovery, the network’s traffic is increased.
This in turn will increase the probability for collisions that
occur if broadcasts of different nodes (with length TDisc

P )
partially overlap. By limiting the channel utilization CU , i.e.,
the fraction in time the channel is busy, the chances for
collisions are reduced. The channel utilization CU depends
on the number of neighbors L sending N messages each, the
broadcast length TDisc

P and the duration of the discovery TD:

CU = N(L + 1)TDisc
P /TD. (1)

It is shown in Sect. VI-D that a CU of 0.2 should be chosen
as an upper bound for the channel utilization in order to ensure

well-assessed link qualities. Collisions are further reduced at
the MAC layer, which performs a carrier sense prior to the
broadcast. If a carrier is detected, the packet is rescheduled
with a short random backoff. Hence a packet may be delayed
at the MAC layer for a short time before being transmitted. In
order to account for this small possible delay, NoSE reserves
a slot of length TR at the end of the discovery. During this
reserved slot, the nodes must not schedule any broadcasts
beforehand. This allows the MAC for transmitting broadcasts
previously blocked by a positive carrier sense.

The NoSE discovery messages are evenly distributed over
the whole discovery phase. This avoids burst failures that are
induced due to common short-time link failures in WNSs [3].
Hence, this even distribution of the discovery messages in-
creases the fidelity of the link assessment. For this purpose,
the discovery time is partitioned into N subslots. In each of
the subslots the node selects independently a random time to
send one discovery message.

During discovery, NoSE shortens the channel-polling in-
terval to TDisc

P . According to Equation (1) this reduces the
channel utilization CU and therefore allows reducing the
discovery time TD. This shortening of the channel-polling
interval increases the responsiveness and also saves sending
energy in the order of TSleep

P /TDisc
P .

V. IMPLEMENTATION AND TEST SETUP

A. Implementation

NoSE has been implemented in TinyOS-2.x for Tmote Sky
nodes, which feature a packet-based Chipcon CC2420 radio.
We use the TinyOS-2.x CC2420 radio stack [19] with low
power listening (LPL) enabled. NoSE is implemented as an
individual layer in the protocol stack. Figure 4 shows NoSE
integrated between the MAC and the Network layer. NoSE
uses the standard MAC interface for transmitting its messages.
We added an interface to adapt the polling interval TP on the
fly. Furthermore the countdown-timer TS of the parameter call,
which starts the subsequent mode change, is updated in the
message buffer right before the call is forwarded. This allows
for a synchronized mode-change. All NoSE packets (network
calls and discovery packets) are identified using a user-defined
frame type according to IEEE 802.15.4. Based on a received
packet’s frame type, NoSE decides whether the packet needs
to be internally handled or passed to the network layer.

Internally, NoSE maintains a state machine containing three
phases: sleep, discovery and operational (cf. Fig. 1). When the
node is powered on, it switches into the energy-saving sleep
state. As soon as a wake-up call is received, the node sets
the discovery start and expiration timers. After the discovery
phase, the node is in the operational state.

In order to achieve a better fidelity in the link estimation,
Chackeres et al. [20] showed that the discovery messages
should have a similar packet size to the data messages being
used during operation. NoSE therefore sends a discovery
message with the same length as data messages sending
additional information that can be used by the routing protocol,
e.g., the node’s battery level.
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B. Integration

After the discovery, the collected neighbor information has
to be transferred to the routing protocol. Thus, it is advisable
that NoSE and the routing protocol share a neighbor list.

As an example, consider the widely used ETX [21] routing
scheme, where packets are routed based on the overall link
performance of routes. This requires knowledge on each link’s
PPR, which can be gained directly from the link-assessment
information collected during NoSE’s discovery phase. This
results in a great performance gain compared to the current
TinyOS 2.x ETX implementation, where all links are initial-
ized as being perfect (EETX = 0, as of revision 1.4).

C. Testbed Evaluation

NoSE is designed to improve the effectiveness of real
deployments. To this end, we tested NoSE in a realistic
environment. The application scenario assumed is a wireless
multi-hop fire-detection network initialized with NoSE. The
nodes’ neighbor density and location is characteristic for fire-
detectors deployed in an office building: 25 nodes deployed
over several offices on a single floor. The average neighbor
density is 7.4; the maximum density is 12. For the evaluation,
558 test runs were performed.

In order to check the quality of NoSE’s neighbor search,
it is required to have a profound knowledge of the network
characteristics, i.e., all neighbors and the according link qual-
ities. This information however is susceptible to change. For
this reason, the network characteristics have been measured 18
times over a period of six weeks, alternating with the perfor-
mance evaluation of the NoSE protocol. For each assessment,
every node sent 1000 broadcast messages (with a length in
the order of 1 ms) randomly distributed over a period of three
hours using CSMA without duty cycling.

We extract two different metrics from this reference data,
which are used in the evaluation: the Packet Reception Rate
(PRR) and the Long Term PRR (LTPRR). The term PRR
reflects a single link assessment being closest in time to the
NoSE test. The LTPRR expresses the link performance over
the whole six weeks, i.e., over all 18 link measurements.
Furthermore, the terminology High-Quality Links, refers to
links with a (LT)PRR > 95%.

D. Simulation

In order to show the scalability of the discovery, NoSE
has also been simulated in Castalia 1.3, a state-of-the-art
WSN simulator based on OMNet++. Castalia provides a
realistic wireless channel model that captures the effects of
the so called grey area. As with real deployments, this model
results in many links that exhibit poor performance. Castalia
calculates packet collisions based on the signal-to-interference-
plus-noise ratio. Castalia further provides a radio model that
features transition times between the radio’s states. Our radio
model specifically uses the characteristics of the CC2420 to
match the testbed evaluation.

The simulations use a network containing 160 nodes, ar-
ranged in a grid with a small Gaussian-distributed displace-
ment. The network represents an event-detection system where
nodes are rather evenly spread. The grid size is varied resulting
in node densities ranging from 4 to 45 neighbors. 60 different
topologies were analyzed by feeding random seeds to the
grid’s displacement and the wireless channel model.

VI. PERFORMANCE EVALUATION

The metrics used to benchmark NoSE evaluate the major
concerns for the maintenance: (1) energy efficiency, (2) re-
sponsiveness and integration and (3) the completeness of the
neighbor search and the quality of the link assessment. These
metrics are evaluated based on the most important maintenance
task: the original deployment of the nodes and the subsequent
first start of the application. It is essential that the node’s
energy consumption is minimized during the deployment, yet
shows a fast and reliable start-up as soon as all nodes in the
network are installed. It should be noted that the analyzed
deployment and first start-up show very similar characteristics
to other subsequent maintenance tasks.

Focusing on the initialization, NoSE can be compared to
the Birthday Protocol (BP) [14]. While BP neither features
operational mode changes nor link assessment during initial-
ization, we can compare NoSE based on energy efficiency
and responsiveness during the initialization. BP has been
implemented according to the protocol description in [14] and
evaluated with the suggested parameter allowing to find 95%
of the available links.

Concerning integration, NoSE is designed to easily integrate
with the predominantly used LPL MAC protocols. On the
other hand, BP requires a separate, second radio stack.

A. Energy Efficiency during Deployment

The energy consumption is analyzed by measuring a single
node’s power consumption. Fig. 5 displays the traces of the
two protocols’ power consumption during the deployment and
the start-up phase. Power measurements are performed with an
Agilent N6705A power analyzer, with a sample time of 1 ms.
For illustration purposes, samples are integrated and plotted
over periods of 100 ms each.

During the deployment of the nodes, drastic power sav-
ings have a significant impact when the installation time is
in the order of days. Fig. 5 only presents the last 100 s
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Fig. 5. Measured current consumption and responsiveness analysis for NoSE and BP during initialization in the testbed. The dashed line indicates the average
energy consumption of the different protocol states.
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Fig. 6. Extrapolated energy consumption comparison during initialization.

of the deployment phase, whereas this phase usually takes
orders of magnitudes longer for real installations (i.e., days).
Nevertheless, longer measurements confirmed that these trace
excerpts are representative for the node’s behavior. NoSE’s
deployment (sleep) phase shows a very regular and low-
power consumption, with an average current drain of 0.28 mA.
This is due to NoSE’s low duty cycle merely sampling the
channel once every second. BP following the same paradigm
of listening only, shows an increased current drain of about
0.41 mA. This can be attributed to a rather long channel
sampling time of 20 ms waiting for a message to be received.
Another interesting artifact can be seen around the interval
-70 to -50 s, where BP did not sample the channel for about
20 s. Due to the use of random sampling times, nodes may
sporadically stop to listen to the channel for a long time,
rendering the protocol highly non-deterministic.

Fig. 6 shows the significant energy savings when using
a dedicated maintenance scheme compared to the standard
routing protocol CTP*. For the comparison, it should be
stressed that both NoSE and CTP* are based on the same
LPL MAC protocol. CTP* requires 115 mAh over a period
of 7 days and hence 5% of the available energy of a single
alkaline AA battery (2200 mAh). The dedicated sleep phase
of NoSE allows to reduce this amount by 60%.

B. Responsiveness

The second important metric is the responsiveness of the
start-up. This is shown in Fig. 5, where t = 0 s indicates
the begin of the start-up. BP’s runtime is non-deterministic.
In particular the start time of the discovery differs for all
nodes in the network. As illustrated in Fig. 5(b), the node
started its discovery at t = 62 s. Hence the node initiating the
discovery at t = 0 s had already finished its discovery. NoSE
on the other hand features a deterministic start-up time, which
is controllable by an application-specific length of wake-up
and discovery. Minimizing these two phases directly increases
the responsiveness.

NoSE’s wake-up call is evaluated for reliability and speed.
Only in one out of the 558 runs on the testbed, the wake-
up call was not received by all nodes. The nodes were always
notified within less than 20 s. Nevertheless a pessimistic wake-
up period of TS = 60 s is chosen and allows for flexibility in
the network size. For the discovery phase, a period of 1 to 2
minutes has shown to be an adequate value (cf. Sect. VI-D).
Overall NoSE provides well-assessed neighborhood informa-
tion in just about 3 minutes starting from a wake-up call.

BP and NoSE both require knowing the end time of the
discovery phase, which allows for switching to operational
mode, e.g., to set up the routing tables. For BP, this requires
estimating the discovery’s runtime, which is upper bounded
by the network’s diameter multiplied by the discovery time.
Hence a conservative estimate of the a priori unknown diam-
eter of the network has to be made. NoSE on the other hand
features a bounded and deterministic duration of the discovery
phase, allowing for a smooth transmission to the subsequent
operation.

C. Neighbor Discovery: NoSE vs. BP

The initialization schemes of NoSE and BP both provide a
neighbor discovery, which we compare in the following. NoSE
and BP both aim at finding all available neighbors. Table II
shows their success rate, each sending 20 discovery broadcasts.
The table segments the number of found neighbors according
the measured link quality (PRR). Both protocols find almost
all of the available high-quality links. The same holds for links



PRR [%] ≥ 95 85− 95 50− 85 < 50
#Links 155 45 42 75
NoSE 97.8% 88.8% 80.8% 59.3%
BP 97.0% 91.9% 82.5% 70.4%

TABLE II
COMPARISON OF THE NEIGHBOR DISCOVERY PERFORMANCE MEASURED
IN THE TESTBED. BOTH PROTOCOLS FIND ALMOST ALL HIGH-QUALITY
LINKS, BUT ALSO A SUBSTANTIAL NUMBER OF LOW-QUALITY LINKS.
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Fig. 7. NoSE discovery phase on testbed: A high channel utilization CU ,
i.e., N large and TD short, jeopardizes the link assessment.

with a link quality of 85-95%. However, both protocols also
find a substantial number of links, with a poor link quality.
These links should not be included, emphasizing the necessity
of a link assessment prior to setting up of the routing tables.

During discovery, both protocols show an increased activity.
Even though discovery time is short, the energy consumption
requires considerations: In BP (cf. Fig. 5(b) between t = 62 s
and t = 122 s) the radio is always turned on, running with
a 100% duty cycle. NoSE uses the low-power mechanism
of the MAC, allowing for a reduced energy consumption as
indicated in Fig. 5(b). Despite the increased activity during
the discovery, NoSE allows for a reduced duty cycle of less
than 20% for the same duration of 1 min as the Birthday’s
discovery phase, thus being 5 times as efficient.

BP’s non-deterministic behavior, the requirement of a sec-
ond radio stack and the lack of an integrated link-quality
estimation show its limited usability when being integrated
into a system.

D. NoSE: Link-Assessment Quality

A unique feature of NoSE is its integrated link assessment.
The assessment is based on the knowledge that all nodes
in the network send N discovery messages. Based on the
number of messages a node receives from a specific neighbor,
it assesses the link quality. This assumption implies that
discovery messages are lost due to bad links and not due to
collisions and requires to limit the channel utilization factor
CU according to Equation (1). Subsequently an upper bound
for CU is determined.

The influence of collisions on the link estimation is analyzed
in Fig. 7 showing the number of high-quality (LTPRR) links,
which received at least 90% of the messages. As a rule of

thumb, for every 10 messages being sent, the discovery should
last an additional minute. For instance, 50 messages require
5 min for finding most LTPRR links. Having a channel-polling
interval TDisc

P = 100 ms and a maximal number of neighbors
of L = 12 in our testbed, the maximal channel utilization CU

should be:

CU ≤ N(L + 1)TDisc
P /TD = 10(12 + 1)0.1/60 ≈ 0.2 (2)

Hence, the discovery duration can be almost arbitrarily
reduced by shortening the polling interval TDisc

P . However,
this reduction of the discovery phase also shortens channel-
assessment time. As shown in [3] (in an office environment
with Tmote Sky nodes), the link estimation is susceptible
to short-term link fluctuations if the message interval un-
dercuts two seconds. Hence, if the link assessment quality
is of paramount importance, the discovery time TD for this
configuration should not fall below 2 ·N seconds.

In order to show the scalability of NoSE’s discovery
scheme, the effect of different network densities is simulated.
Fig. 8 shows the performance of the link assessment in simula-
tion depending on the node density, highlighting the fraction of
collisions for high-quality links. Identical to the testbed results,
a highly increased bandwidth jeopardizes the link assessment.
If the data load is low, e.g., 10 messages in 2 min as seen
in Fig. 8(a), the number of collisions are limited to about
4%, even with 45 neighbors. More detailed, for a discovery
duration of 120 s, Fig. 8(b) shows an increased number of lost
packets for more than 11 neighbors. This is identical to the
implementation results, emphasizing that a channel bandwidth
of 20% must not be exceeded during discovery. Thus, the
discovery phase can be tuned for an optimized performance
by estimating the deployment’s maximal node density.

For parameterizing the discovery, it has to be decided how
solid the links should be assessed. Is a link estimation based
on N = 10 messages sufficient or should rather N = 50
messages be sent? The discovery time should then be set to
about TD = 2 ·N seconds as discussed above. For setting the
appropriate channel polling time, an estimate of the maximal
number of neighbors L in the network has to be made and
results in TDisc

P ≤ 0.4/(L+1) according to Equation (2). For
a typical scenario of initializing a WSN, Table I details on the
suggested settings of NoSE’s parameters.

VII. SUMMARY

In this paper we have addressed the issue of maintenance in
a Wireless Sensor Network deployment. We presented NoSE,
a protocol stack enhancement allowing for mode changes of a
network while under operation. This allows switching the net-
work into an energy-efficient sleep state while maintenance is
being performed. It further allows for the possibility to switch
a network off, if the data from the network is temporarily not
being used. NoSE is readily usable with LPL MAC protocols
commonly used today.

NoSE utilizes resources effectively, switching to high band-
width phases where necessary, but drastically constraining
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Fig. 8. NoSE discovery phase in simulation. The parameters need to be adapted to the network density in order to ensure well assessed links (T Disc
P = 100 ms).

power consumption otherwise. It manages the trade-off be-
tween optimal responsiveness required and an efficient, min-
imal usage of the energy resource. Furthermore NoSE offers
superior solutions for initialization that outperform standard
and specialized approaches by at least 30% energy savings
during maintenance. A chief aspect of NoSE is its bounded
operation time, which allows for timely validation of system
operation. Additionally, NoSE’s unique integration of link
estimation allows for a well-assessed neighborhood. By fil-
tering out mediocre links, NoSE increases the stability and
performance of the networking phase in the operational state.
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